Abstract
This post is concerned with the optimal
design and successful integration of emergent video game mechanics for systems
that use Procedural Content Generation (PCG). The topics analyzed here within
will provide descriptions and definitions of key approaches to video game
design and procedural content generation, through research of specialized
taxonomies and frameworks. A critical analysis will also attempt to address
distinct correlations between emergent mechanisms in video games and PCG within
complexity theory, as well as present logical conclusions and example designs.
Key Terms
Complex Systems, Design Patterns, Game
Design, Game Mechanics, Emergence, Progression, Machinations, MDA Framework of
Games Design, Procedural Content Generation (PCG).
Contents
1. Introduction.1.1 The Structure of Gameplay.
1.2 Gameplay Optimization.
1.3 Gameplay and Procedural Content Generation.
2 How can we Accurately Approach Gameplay Design?
2.1 Game Design Theory as Mechanisms and Frameworks.
2.2 Gameplay as a Vocabulary.
2.3 Dynamic Mechanics and Internal Economies.
2.4 Machinations.
3 How do we Integrate Gameplay Mechanics with PCG?
3.1 Mechanism Patterns.
3.2 Game Design Vocabularies for PCG.
3.3 Order and Chaos.
4 Do Emergent Mechanics and PCG correlate as Complex Systems?
4.1 On Emergence.
4.2 Procedural Emergence.
5 Conclusions.
Bibliography
1. Introduction
“Emergence thrives somewhere between Order and Chaos” Joris Dormans, 2012
1.1 The Structure of Gameplay
A game in its primordial form is defined by
video game scholar Jesper Juul in his paper ‘The Open and the Closed: Games of Emergence and Progression’ as “a small number of rules that combine and
yield large numbers of game variations, which the players then design
strategies for dealing with” (Juul, 2002). What this refers to is the emergent style of play than can be
exemplified in a game of Chess. In Chess, there is a relatively small set
of simple rules that when combined, create a very deep and wide pattern of game
play states. The pathway that a single game of chess can take between these
states is known as the games trajectory through its probability space (Adams & Dormans, 2012).
There are by far more trajectories in a game of chess than the original
designer could have predicted. This is the primary understanding of emergence in games and is known to yield
a high threshold of replayability. Emergence as a study refers to an aspect of Complexity Theory and Complex Systems which will be discussed
further within this post.
Games of Emergence differ from Games of Progression however, which is a
newer style of play, as first seen within adventure games, and is defined by
Juul as a predefined set of actions to be experienced by the player in a sequence,
such as a traditional lock and key mechanism. This method allows the designer
much more control over the final play experience, but does not yield a high
threshold of replayability, as the repeating of tasks can easily become
monotonous. In terms of a game’s longevity, this suggests that designs of emergence are the more practical choice.
However this concern of monotony can arise in Games of Emergence if a process is out of balance, reducing
probabilty space and leading to a particular strategy being more efficient (Adams
& Dormans, 2012). This imbalance can be countered using design patterns and
frameworks to create mechanisms that feed internal elements back into play, or
conclude the game entirely.
1.2 Gameplay Optimization
In game design theory, there exists a set
of formalized guidelines that a designer can consider when developing ways of
play within a system. This does not mean that the designer should feel in any
way restricted, but rather empowered through an aided visualization of play
states. These guidelines exist within two frameworks. A computational approach,
as seen in Machinations Diagrams (Dormans, 2012), and a more philosophical standing, as seen in the MDA (Mechanics,
Dynamics and Aesthetics) framework of video game design (Hunicke, LeBlanc, &
Zubek, 2004). Machinations view game
elements as resources within an internal economy, whereas the MDA approach
considers all aspects of a game’s architecture as emotional inducers to the
player. It is important to distinguish between play
states as a collection of patterns that culminate a design vocabulary, and the
design of such patterns with an optimal player experience in mind. This is what
is considered at the core of each of the two frameworks.
1.3 Gameplay and Procedural Content Generation
Procedural Content Generation (PCG) is an
area of study in computer science that is concerned with the automatic, or
semi-automatic processes of generating content using pre-designed algorithms. Procedural
algorithms are not random. They contain mathematical formulae that create a
result. This means that the generation can be guided and create content that
mimics manual development. In Chris Crawford’s book Chris Crawford on Games Design (Crawford, 2003),
it is shown that algorithms can be thought of as data intensive or process
intensive. The notion of data intensive programming is more focused on the
storing and relocation of bytes within databases, but is performance heavy.
Process intensive programming on the other hand is more concerned with formulae,
and so more applicable to PCG. These both attribute heavily to the mechanics of
progression and emergence (Adams & Dormans,
p25, 2012). For games of progression, pre-arranged sequences of stored data are appropriate for the type’s structure. Emergence on
the other hand is more associated with the processing of data, and computers
are natural processors, able to create complex
simulations in real time. Crawford believes all video games should capitalize
on this more computationally optimal feature.
Figure 1: Elite, Holdstock 1984 |
The applications of PCG prove heavily
viable for video games, with examples seen as far back as Elite in 1984 (Holdstock, Fig. 1). Elite was a procedurally generated space flight,
combat and trading simulator that included hundreds of algorithmically stored,
procedural star system simulations. In the paper ‘Search-based Procedural Content Generation: A Taxonomy and Survey (Togelius, Yannakakis,
Stanley, & Brown, 2011)’, it is noted that Elite displayed three very distinct benefits
of using PCG in video game development.
- Performance
- Elite was able to store large amounts of data within a few tens of kilobytes
using small, process ready, numerical values to represent individual
planets. These are compressed as formulae until required.
- Development - The prohibitive expense of manually crafting each game asset. Many titles make use of software such as SpeedTree (Interactive Data Visualization, Inc) that can create vast variations in, and distribution of, vegetation across large open worlds.
- Advancements in design - PCG presents the possibility of completely new game types, with mechanics designed around generation. If content can be generated with enough variety during play, the concept of a truly endless game experience is a plausibility. (Togelius, Yannakakis, Stanley, & Brown, 2011)..
Figure 2: No Man's Sky, Hello Games |
As specified in the third, this technology allows designers to consider re-playability at a much grander scale than can be conceived with traditional designs, through the inclusion of near infinite content (Smith, 2014). In the contemporary video games industry, Sean Murray, the managing director of developer Hello Games has demonstrated a procedural video game universe in their product No Man’s Sky (Hello Games, In development 2014, Fig. 2). In his blog Murray notes that the procedures involved use a 64 bit system (2 to the power of 64) to deliver a ‘seed’ value within its range. This seed in turn is calculated against other values, such as the position of the player in Cartesian space. These calculations define logical parameters that specify attributes for star systems, planets, atmospheric scattering, ecologies, audio wavelengths and much more. This form of parameter based generation is defined as a Parameter Vector in the aforementioned Taxonomy developed by Togelius et al, and will be elaborated further within this post. In numerical terms Murray states that it would take 585 billion years to visit each planet if you could visit one every second (Murray, 2014).
It is procedural logic with
pre-set formulae that allows for data to be generated and disposed of as players
navigate the universe, allowing for a massive probability space, heavily in
line with the understanding of emergence. In designing
play for a system of this magnitude, Murray further explained during an interview
at the PlayStation Experience event (December 2014, Fig. 3) that he intended to
use a progressive mechanism as a
means of creating structure within gameplay. His system increases the value of concrete resources, such as better performing equipment for the player to
use, and abstract resources, such as threat, as the player
travels towards the center of the procedural environment. The differences
between concrete and abstract resources are distinguished
further in this post. In correlation with the works of Deus Ex designer Harvey Smith, in his article ‘The Future of Games Design’ (Smith, 2001) on the need for game systems that focus on
player expression, Murray further expresses how the game has been planned as an
individual and personal journey. It is formed as a Massively Multiplayer Online
Game (MMOG), with players freely exploring the universe in any manner that they
see fit. He envisions the trajectory of play between players as “spokes on a wheel” around the center as players
form together, although he notes events may not occur in this way, which is the
true purpose of the design. Emergent play systems are, from a design
perspective, a careful balance between player freedom and the control of the
designer (Adams
& Dormans, 2012).
In considering game design theory with PCG in mind, video game scholar Gillian Smith proposed
a design framework for further developments in her paper ‘Understanding Procedural Content Generation: A Design-Centric Analysis
of the Role of PCG in Games’ (Smith, 2014).
Smith drew conclusions from the taxonomy of video game PCG proposed by Togelius
et al. in their paper and combined them with the player-centric MDA Framework to produce a design focused
vocabulary for video games with PCG that prioritises an optimal player
experience, which will be discussed further in this paper. However, such existing
frameworks, taxonomies and philosophies are yet to fully explore the direct
implications and correlations of emergence
for such content in specific regard to complexity
theory, and so form the focus of this paper. Using applied research, this
work will attempt to address the following questions.
- How can we accurately approach gameplay design?
- How do we integrate gameplay mechanics with PCG?
- Do emergent mechanics and PCG correlate as complex systems?
2 How can we Accurately Approach Gameplay
Design?
2.1 Game Design Theory as Mechanisms and Frameworks
A video game is often referred to as a state machine (Grünvogel, 2005) (Dormans,
2012).This is defined in the book ‘Game Mechanics: Advanced Game Design’ (Adams & Dormans, 2012) as a hypothetical machine that can exist in different states, with
rules that govern how and when the machine should transition between these
states. The term mechanics in a gameplay design context refers to theoretical
structures used in directing the trajectory of a player’s interactivity through
a game’s states, or probability space (Adams & Dormans, 2012).
In the PhD Thesis ‘Engineering Emergence: Applied Theory for Games Design’ by Joris
Dormans, intricate combinations between several frameworks, including his own
work on Machinations diagrams, are
discussed extensively for creating such mechanisms. These frameworks constitute
a design vocabulary that empowers designers in their work through an
intrinsically focused view of gameplay. Dormans also notes however that “Due to the emergent nature of games it is
often impossible to accurately predict the behavior of a game before it is
implemented.” (Dormans, 2012).
2.2 Gameplay as a Vocabulary
One such framework that attempts to counter
this ‘impossibility’ (of which also is a popular reference within game
literature), was established in the paper ‘MDA:
A Formal Approach to Game Design and Game Research’ (Hunicke, et al., 2004). MDA refers to Mechanics,
Dynamics and Aesthetics. It is described as a formal lens from which to
view a video game’s structure and was devised in an effort to unify the
different professions found in game development, for the purposes of and
optimized end user experience. It promotes a philosophy that each of these
fields, such as art, technical staff and creative designers, all at some point
have to consider the final experience of a game during development. These
different visions combine as the project reaches conclusion, ultimately
affecting the overall experience of gameplay, echoing complexity theory.
The approach views a video game as 3 combined
components. These are the game rules, the game system, and the emotional
experience induced upon players. A design perspective of these components
equates to the Mechanics, Dynamics and Aesthetics of a game. The definitions as
they appear in the paper are:
Mechanics: describes the particular components of the game, at
the level of data representation and algorithms.
Dynamics: describes the run-time behavior of the mechanics
acting on player inputs and each other’s outputs over time.
Aesthetics: describes the desirable emotional responses evoked in
the player, when she interacts with the game system.
(Hunicke,
et al., 2004)
The framework centres
on ‘Aesthetics’ as the primary attribute, and expresses that the word gameplay
is better replaced by a formal taxonomy to create a vocabulary that can focus
more specifically on what experience the game actually delivers during play.
The taxonomy as it appears in the paper is as follows:
1. Sensation -Game as sense-pleasure
2. Fantasy -Game as make-believe
3. Narrative -Game as drama
4. Challenge -Game as obstacle course
5. Fellowship- Game as social framework
6. Discovery -Game as uncharted territory
7. Expression -Game as self-discovery
8. Submission -Game as pastime
(Hunicke,
et al., 2004)
‘Aesthetics’ are then used to dictate models of play, of which dictate the design of Mechanics and Dynamics for an emotive focused game. This means that the MDA framework focuses heavily on the resulting experience first, allowing the designer to choose which emotions are induced by the game. To clarify how MDA can be used, we can consider a dice roll, the Mechanics would be the roll of the dice to find a chance value, whereas the Dynamics could be how the result of that dice affects the number of movements a player may make in a board game. The design of this system could have stemmed from an intention to induce the Aesthetic of Sensation, such as risk or anticipation.
2.3 Dynamic Mechanics and Internal Economies
Using this framework, we
can perceive mechanics and dynamics as a collective process that induces a
predetermined emotion within a player. The framework paper shows how in board
games that use two die for player progression, there is a predetermined
probability in the chance value. A value of 7, as show in Fig. 4 (Hunicke, et al., 2004), has the highest chance
of being rolled. This probability, by its nature, provides an average speed in
which players can move around a game. Using this knowledge we can create dynamic mechanics that visualise game
elements and player emotions as concrete or
abstract data, forming an internal economy of resources. Resources in video games are defined in the book Game Mechanics: Advanced Game Design (Adams & Dormans, 2012) as any game element
that can be defined numerically, and can be envisioned as an economy within a
game. Resources
can be further defined as:
- Tangible or Intangible
- Tangible resources have a physical presence within the game, such as the trees in the game warcraft (Blizzard Entertainment, 1994), which can be converted into Intangible lumber, which is stored as a numerical value (Adams & Dormans, 2012).
- Concrete or abstract
- Concrete resources have a definitive presence within a game where as abstract variations do not. Such as the ghosts in Pacman (Namco, 1980) as a concrete resource and the threat they pose an abstract value, possibly expressed between 1 and 100 (Adams & Dormans, 2012).
- Discrete or Continuous
- Discrete resources exist in states, such as a boolean ‘if/else statement’ within computer programming represented by binary, that can be either true (1) or false (0). Continous resources concern any transition between states and can be represented as floating point values.
As
with any economy, we can consider the dynamics across values using defined economical
functions, such as Sources, Drains, Pools, Traders and Converters.
A Source in economics is any
factor that can create resources, a Drain
removes these resources, a Pool is a place where resources gather, a Trader divides them between other
factors, and a Converter changes their
type to another (Adams & Dormans, 2012). This understanding of Dynamic Mechanics in an economical
structure are what form the basis of a tool to design mechanisms of play known
as Machinations (Dormans, 2012).
2.4 Machinations
A game’s internal
economy, as with any economy, can be visualised with graphs, charts and
diagrams. Machinations, as depicted in the PhD
Thesis ‘Engineering
Emergence: Applied Theory for Games Design’ (Dormans, 2012) are
theoretical constructs by which a designer can visualise the play experience of
a game within diagrams of that game’s internal economy. A prime example of this would be a Feedback Mechanism. A closed loop system that is designed to stabilize, or
destabilize a certain factor in a system. In a game design context this would
equate to creating balanced or unbalanced play through mechanisms that modify
the abstract resources of advantage
and disadvantage, and feeding them back into the game. In figure 5 (Hunicke, et al., 2004), we can see an example
of a Negative Feedback mechanism that
stabilises temperature through negatively altering its value. Figure 6 (Hunicke, et al., 2004) shows resource
management game Monopoly, where there exists
a positive feedback system in which
monetary value is increased or decreased further as the game progresses. Figure 7 shows a similar feedback mechanism in a typical resource management video game, such as a real time
strategy (RTS). This example uses Machinations
to visualize an increase in monetary gain
over time, as a player invests in additional workers.
Figure 8 shows a more intricate example of how a designer can use Machinations diagrams to visualize gameplay as a whole using the classic videogame Pac-Man (Namco, 1980) (Adams & Dormans, 2012). In the tool itself, these diagrams can run as simulations in in real time, with abstract resources such as threat increasing as more and more as ghosts enter play.
Double lined modules show player
interactivity. Solid Arrows show rates in resource motion through a game and
dotted arrows represent modifications to the state of these rates and as a
consequence, the state of play. This is an extremely accurate approach for aiding
the designer to visualize play experiences in video games and can be used in a
variety of imaginative ways, such as using Pools
and Arrows to simulate Progression or level transition or sources to simulate
player’s entering a multiplayer game world.
3 How do we Integrate
Gameplay Mechanics with PCG?
3.1
Mechanism Patterns
The concept of design
patterns was first introduced in the book A
Pattern Language (Alexander, et al., 1977)
in an attempt to capture reoccurring patterns in architecture. This work
formed the basis of many structural considerations, and of particular use for
the structure of programs. In the book Design
Patterns: Elements of Reusable Object-Oriented Software, it is discussed
how patterns in logical script can be reused as templates for different
scripts. Using this as a basis to understand logic in a video game, there are
several conclusions that can be made regarding the transition of resources
amongst game mechanic systems (See 2.4). In the book Game Mechanics: Advanced Game Design
(Adams & Dormans, 2012), several patterns of play are shown within Machinations diagrams. These patterns
are found to be reoccurring when simulating many different game mechanics with
the tool. They can be pieced together to form more complex systems of gameplay. This also shows how play can be
designed in tandem with a game script, or alongside programmers in a MDA (Hunicke, et al., 2004) focused approach (See
2.2). Such patterns are presented by Adams and Dormans and have been evaluated
by them as to how they may play a role in gameplay functionality. Example
patterns fall under categories such as Engines
for a game mechanism, Friction
between resources and Escalation
across play states. The patterns come in many forms but a few core designs have
been determined. Examples include (Adams &
Dormans, 2012):
Engines
Engines in game design are any mechanism that can generate functionality within in a game, similar to an engine in a vehicle.
(You may notice a similar pattern in the dynamic engine on the right when viewing the example as shown in 2.4)
Friction
An example of multiplayer Friction in a game. This is known as Attrition, whereby attacks on an elements strength weaken its ability to perform.
3.2 Game Design Vocabularies for PCG
3.3 Order and Chaos
4 Do
Emergent Mechanics and PCG correlate as Complex Systems?
4.1 On Emergence
4.2 Procedural Emergence
5 Conclusions
Escalation
A game system that rises in a particular fashion. Learning or difficulty curves can be represented by an escalating pattern.
An example of multi-player Escalation. A positive feedback mechanism for 2 combatants that can upgrade an Abstract resource for offence. This is known as an Arms Race.
3.2 Game Design Vocabularies for PCG
Two
very prominent papers are to be considered when designing play for PCG. These
are titled ‘Search-based
Procedural Content Generation: A Taxonomy and Survey (Togelius, Yannakakis,
Stanley, & Brown, 2011)’ and ‘Understanding Procedural Content Generation:
A Design-Centric Analysis of the Role of PCG in Games’ (Smith, 2014).
The first of these
papers by Togelius et al., describe PCG, for both board and video games, as an Artificial Intelligence (AI) study, concerning the focus of
procedural algorithms (see 1.3) to generate content by themselves. Several
distinctions are presented in this paper for defining a vocabulary to be
considered when creating PCG. The base definitions within the vocabulary are:
- Online vs Offline PCG
- Online refers to content that is generated during runtime of a
game, such as the environments and other systems in No Man’s Sky (Hello Games, In
development 2014). Offline is generated before runtime such as the maps
in Civilization (Meier &
Shelley, 1991).
- Necessary vs Optional Content
- Necessary content must be experienced by the
player, such as if the game is set within a procedural environment. Optional content can be avoided,
such as the weapons exemplified in Borderlands (Gearbox Software, 2009) of which many procedural weapons were not
required by the player.
- Random Seed vs Parameter Vector
- Random Seed refers to using random number generators
within its logical program, as part of the generation process, such as
terrain fluctuations. A Parameter
Vector is a guided generation of content through careful direction of
the program functions within their parameters.
- Stochastic vs Deterministic Generation
- The word Stochastic is closely related to chance, whereas
deterministic can easily be predicted. Similar to the play styles of emergence and progression. These definitions define type of generation
produced from Random Seeds and Parameter Vectors.
- Constructive vs Generate and Test
- Constructive refers to content that is only required
to be generated once, such as the aforementioned weapons in Borderlands (Gearbox Software, 2009). Generate and Test performs a generation, and then uses
additioanl algorithms to test if the content meets certain criteria, such
as whether a clear path through generated corridors is present. The
process is repeated if the content fails the test.
(Togelius, et al., 2011)
The second of these
papers, by Smith, draws from the taxonomy presented in the first, but through
the philosophical lens of game experience as defined within the MDA framework (Hunicke, et al., 2004, See 2.2,). The purpose of the
paper is to promote a similar vocabulary for game design and PCG that is more emotionally driven, by focusing on how PCG
is aproached from each area within a game development pipeline. This is
achieved in the paper through examining the concerns of the programmer, who is
responsible for the generator, and the game designer who uses it. How the
design of play is transmitted into the generator, is what is of most concern.
This vocabulary falls under 4 key categories. These are:
- The Building Blocks
- The way in which the generator produces content.
- The Game Stage
- Online or Offline
as defined in the first paper by Togelius et al.
- The Interaction Type
- Whether a player has an impact on the content. This includes no influence, parameterised influence such as altering the parameters of
the generator in a UI, as seen in the map options in Civilisation (Meier & Shelley, 1991). There is also Preference that lets the user
guide the generator in it’s decisions, and Direct Manipulation where the player can dynamically alter
the generator, such as the creature editor in Spore (Maxis, 2008).
- The Player Experience
- Experience in this instance refers to how the generator is
received by the player. Some generators may be concerned with directing
the emotions of the player and others may simply create seemingly random
content that let players interact with the generator in a way they
choose.
(Smith, 2014)
3.3 Order and Chaos
In recent paper by Joris Dormans ‘Making
Design Patterns Work’ (Dormans, 2013).
Dormans challenges the use of Taxonomies and Frameworks to define gameplay. He
expresses that game literature and game development as an industry is heavily
divided, and that developers are already able to form definitions in content
themselves, and do not require theoretical ones by game scholars. He also
states that a Taxonomy can be simplified to just categories of design patterns,
and that to make them work we should not simulate initial play ‘ideas and
concepts’ with patterns, but rather use them to find solutions to game design
problems. He states in the paper:
“In order to make design patterns work it is due time we as academics re-evaluate how we design pattern libraries and to what purpose we design them.” (Dormans, 2013).
In
another quote from the same paper he states
“What is more, most designers practically live for the initial generation of ideas at the start of a new project.” (Dormans, 2013)
Game design from concept to product is a hard process
to achieve, and Dormans is suggesting that this is a possible future for design
tools such as Machinations. What if
we was to combine Dormans Machination patterns and PCG to form procedural
patterns of play using algorithms? In his PhD Thesis ‘Engineering Emergence: Applied Theory for
Games Design’ (Dormans, 2012) Dormans refers to Automated
Design Tools and can be quoted:
“Procedural techniques can also be leveraged to automate game design tools!”He has developed a prototype of this feature known as Ludoscope.
4 Do
Emergent Mechanics and PCG correlate as Complex Systems?
4.1 On Emergence
On considering Emergent design
of mechanics, in personal correspondence with Ernest W, Adams, joint author
with Dormans on the book ‘Game Mechanics:
Advanced Game Design’ (Adams & Dormans, 2012) for the writing of
this post, Adams can be quoted on Machinations:
“It is capable of creating emergent game situations by combining different common design patterns: positive and negative feedback loops, stopping mechanisms (also called the law of diminishing returns), arms races, attrition, and so on.” (Adams, 2014)
The use of the word emergence predates its uses in the descriptions of gameplay types
by Juul (Dormans,
2012). In the paper by Marcus Christen and Laura
Rebecca Franklin ‘The Concept of
Emergence in Complexity Science: Finding Coherence between Theory and Practice’
(Christen &
Franklin, 2002), emergence is expressed as a central
factor in complexity theory and the
understanding of complex systems.
These are studies of the relationships between individual parts of a system as
they produce behavioral patterns within that system and are exemplified
everywhere, such as the neurons within the brain or smaller networks within the
internet (Bar-Yam,
2002) (Ladyman, et al., 2012).
4.2 Procedural Emergence
These parts in the context of PCG refer the
algorithms used to create them. Procedural Emergence has been simulated in the
studies of Cellula Automota, with a
prime example in the work of John Conway in his Game of Life (Conway, 1970). That uses algorithms to express if cells in
an image are black (alive in the his definition) or white (dead) based on the
state of neibouring cells. What was of the most note in examples created with
the game, was that behavioural patterns emerge at different scales of the image
when the simulation was ran. A procedural system is complex and so are mechanics within a game. They can be entwined
and designed together using Feedback Loops as an example.
“All games are systems consisting of many parts that form a complex whole” (Salen & Zimmerman, 2004, 55)
5 Conclusions
Complexity Theory and Emergence are known to be intrinsically linked to Game Theory. This is not Game Design Theory. It is the study of strategic decisions between rational thinking entities, through mathematical models of conflict and cooperation and is extensively linked to economics. Several Nobel Prizes have been presented to game theorists for advancements in the Sciences of Economics. Considering this research, there is a lot of thought that can be attributed to correlations between Internal Economies as detailed in Dormans work and real world economics. Is there room for an emergent, procedural economy in the non-virtual world?
Figure 13: Complex Systems, Binghamton University, 2014 |
It is worth noting that currently, the 'indie' market of the contemporary video games industry accounts for 54% of the current mobile gaming market (McKinsey, 2014) due to ease of scope and 3rd party engine availability. The inclusion of procedurally generated content is heavily viable within this domain as the techniques allow smaller development teams to create game play environments that can compete with larger studios. Mobile gaming is a domain within the industry that is growing at a rapid rate, primarily through the rise of interest in video games for mobile devices using 3rd party software engines (Helgason, 2014).
Figure 14: David Helgason on the Mobile Gaming Market |
Bibliography
Adams, E.
& Dormans, J., 2012. Game Mechanics: Advanced Game Design. Berkeley:
New Riders; 1st edition.
Adams, E.
W., 2014. Personal Correspondence [Interview] (1 12 2014).
Alexander,
C., Silverstein, M. & Ishikawa, S., 1977. A Pattern Language. s.l.:Oxford
University Press.
Bar-Yam, Y.,
2002. General Features of Complex Systems. Konwledge Management,
Organizational Intelligence and Learning, and Complexity, Volume 1.
Binghamton
University, 2014. What are Complex Systems. [Online]
Available at: http://binghamton.edu/cx/
[Accessed 12 2014].
Available at: http://binghamton.edu/cx/
[Accessed 12 2014].
Blizzard
Entertainment, 1994. Warcraft, s.l.: s.n.
Carli, D. M.
D., Bevilacqua, F., Pozzer, C. T. & d'Ornellas, M. C., 2011. A survey of
procedural content generation techniques suitable to game development. Salvador,
Institute of Electrical and Electronics Engineers, p. 1.
Christen, M.
& Franklin, L. R., 2002. The Concept of Emergence in Complexity Science:
Finding Coherence between Theory and Practice, New York: Columbia
University.
Conway, J.,
1970. Game of Life, s.l.: s.n.
Crawford,
C., 2003. Chris Crawford on Games Design. 1st Edition ed. San Francisco:
New Riders.
Dormans, J.,
2012. PhD Thesis: Engineering Emergence: Applied Theory for Games Design, Amsterdam:
Creative Commons.
Dormans, J.,
2013. Making Design Patterns Work. Port Canaveral, International
Conference on the Foundations of Digital Games (formerly known as: GDCSE).
Gamma, E.,
Helm, R., Johnson, R. & Vlissides, J., 1994. Design Patterns: Elements
of Reusable Object-Oriented Software. USA: Addison-Wesley.
Gearbox
Software, 2009. Borderlands, s.l.: s.n.
Grünvogel,
S. M., 2005. Formal Models and Game Design. The International Journal of
Computer Game Research, 5(1), p. 4.
Helgason,
D., 2014. Unite Keynote 2014. Seattle, Unity3D.
Hello Games,
In development 2014. No Man's Sky, Guilford: s.n.
Holdstock,
R., 1984. Elite, s.l.: s.n.
Hunicke, R.,
LeBlanc, M. & Zubek, R., 2004. MDA: A Formal Approch to Game Design and
Game Research. San Jose, CA, AAAI Press.
Juul, J.,
2002. The Open and the Closed: Games of Emergence and Progression. Tampere,
Tampere University Press.
Ladyman, J.,
Lambert, J. & Wiesner, K., 2012. What is a complex system. European
Journal for Philosophy of Science, 3(1), pp. 2-5.
Magie, E.
& Darrow, C., 1933. Monopoly. s.l.:Hasbro, Parker Brothers,
Waddingtons.
Meier, S.
& Shelley, B., 1991. Civilization, s.l.: s.n.
Murray, S.,
2014. Exploring the 18,446,744,073,709,551,616 planets of No Man’s Sky. [Online]
Available at: http://blog.eu.playstation.com/2014/08/26/exploring-18446744073709551616-planets-mans-sky/
Available at: http://blog.eu.playstation.com/2014/08/26/exploring-18446744073709551616-planets-mans-sky/
Namco, 1980.
Pac-Man, s.l.: Midway.
Smith, G.,
2014. Understanding Procedural Content Generation: A Design-Centric Analysis
of the Role of PCG in Games. New York, ACM.
Smith, H.,
2001. The Future of Games Design: Moving Beyond Deus Ex and Other Dated
Paradigms. Montreal, Multimedia International Market.
Togelius,
J., Yannakakis, G. N., Stanley, K. O. & Brown, C., 2011. Search-based
Procedural Content Generation: A Taxonomy and Survey. Copenhagen, IEEE.
Wright, W., 2008. Spore, s.l.: Maxis.